Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of coenzyme A metabolism in Streptomyces avermitilis.

نویسندگان

  • Yanping Liu
  • Tingting Yan
  • Libin Jiang
  • Ying Wen
  • Yuan Song
  • Zhi Chen
  • Jilun Li
چکیده

The role of a tetR transcriptional regulatory gene (SAV7471) in avermectin production in the Gram-positive soil bacterium Streptomyces avermitilis was investigated by gene deletion, complementation, and overexpression experiments. Gene deletion of the SAV7471 open reading frame resulted in avermectin overproduction. The deletion also resulted in overexpression of SAV7472-SAV7473 transcripts, which encode a protein of unknown function and a flavoprotein possibly involved in pantothenate and coenzyme A (CoA) metabolism. EMSAs and footprinting assays showed that SAV7471 can bind to two palindromic sequences with high similarity in the intergenic region between SAV7471 and SAV7472, a region that contains the apparent transcription start sites for each gene detected by rapid amplification of 5' cDNA ends (5'-RACE). In addition to SAV7472-SAV7473, at least two genes (SAV1104 and SAV1258) involved in CoA metabolism are negatively controlled by SAV7471. By negatively regulating the transcription of the target genes SAV7472-SAV7473 and other genes involved in CoA metabolism, SAV7471 may affect cellular metabolic flux and may thereby indirectly regulate avermectin biosynthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional expression of SAV3818, a putative TetR-family transcriptional regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species.

Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. ave...

متن کامل

Two Adjacent and Similar TetR Family Transcriptional Regulator Genes, SAV577 and SAV576, Co-Regulate Avermectin Production in Streptomyces avermitilis

Streptomyces avermitilis is an important bacterial species used for industrial production of avermectins, a family of broad-spectrum anthelmintic agents. We previously identified the protein SAV576, a TetR family transcriptional regulator (TFR), as a downregulator of avermectin biosynthesis that acts by controlling transcription of its major target gene SAV575 (which encodes cytochrome P450/NAD...

متن کامل

A Novel TetR Family Transcriptional Regulator, SAV576, Negatively Controls Avermectin Biosynthesis in Streptomyces avermitilis

Avermectins produced by Streptomyces avermitilis are potent anti-parasitic agents that are useful in animal health care, agriculture, and the treatment of human infections. In a search for novel regulators that affect avermectin biosynthesis, comparative transcriptome analysis was performed between wild-type strain ATCC31267 and avermectin overproducing strain 76-02-e, revealing some differenti...

متن کامل

Functional analysis of TetR-family regulator AmtRsav in Streptomyces avermitilis.

In actinomycetes, two main regulators, the OmpR-like GlnR and the TetR-type AmtR, have been identified as the central regulators for nitrogen metabolism. GlnR-mediated regulation was previously identified in different actinomycetes except for members of the genus Corynebacterium, in which AmtR plays a predominant role in nitrogen metabolism. Interestingly, some actinomycetes (e.g. Streptomyces ...

متن کامل

Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis

The regulatory role of redox-sensing regulator Rex was investigated in Streptomyces avermitilis. Eleven genes/operons were demonstrated to be directly regulated by Rex; these genes/operons are involved in aerobic metabolism, morphological differentiation, and secondary metabolism. Rex represses transcription of target genes/operons by binding to Rex operator (ROP) sequences in the promoter regi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 19  شماره 

صفحات  -

تاریخ انتشار 2013